Weighted norm inequalities for a class of rough singular integrals

نویسنده

  • Husseink Mohammed Al-Qassem
چکیده

Weighted norm inequalities are proved for a rough homogeneous singular integral operator and its corresponding maximal truncated singular operator. Our results are essential improvements as well as extensions of some known results on the weighted boundedness of singular integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Weighted Norm Inequalities for Maximal Multilinear Singular Integrals with Non-Smooth Kernels

Weighted norm inequalities for maximal truncated operators of multilinear singular integrals with non-smooth kernels in the sense of Duong, Grafakos, and Yan are obtained; this class of operators extends the class of multilinear CalderónZygmund operators introduced by Coifman and Meyer and includes the higher order commutators of Calderón. The weighted norm inequalities obtained in this work ar...

متن کامل

Weighted Norm Estimates and Representation Formulas for Rough Singular Integrals

Weighted norm estimates and representation formulas are proved for nonhomogeneous singular integrals with no regularity condition on the kernel and only an L logL integrability condition. The representation formulas involve averages over a starshaped set naturally associated with the kernel. The proof of the norm estimates is based on the representation formulas, some new variations of the Hard...

متن کامل

Weighted inequalities for commutators of one-sided singular integrals

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in (−∞, 0)) with BMO functions. We give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756] and [C. Pé...

متن کامل

A Note on Weighted Bounds for Rough Singular Integrals

We show that the L(w) operator norm of the composition M◦TΩ, where M is the maximal operator and TΩ is a rough homogeneous singular integral with angular part Ω ∈ L∞(Sn−1), depends quadratically on [w]A2 , and this dependence is sharp.

متن کامل

On Some Weighted Norm Inequalities for Littlewood–paley Operators

It is shown that the Lw,1< p<∞, operator norms of Littlewood–Paley operators are bounded by a multiple of ‖w‖ Ap , where γp = max{1, p/2} 1 p−1 . This improves previously known bounds for all p > 2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005